High order adaptive methods of Nyström-Cowell type
نویسندگان
چکیده
منابع مشابه
High-order accurate methods for Nyström discretization of integral equations on smooth curves in the plane
Boundary integral equations and Nyström discretization provide a powerful tool for the solution of Laplace and Helmholtz boundary value problems. However, often a weaklysingular kernel arises, in which case specialized quadratures that modify the matrix entries near the diagonal are needed to reach a high accuracy. We describe the construction of four different quadratures which handle logarith...
متن کاملRunge-Kutta-Nyström-type parallel block predictor-corrector methods
This paper describes the construction of block predictor-corrector methods based on Runge-Kutta-Nystrr om correctors. Our approach is to apply the predictor-corrector method not only with stepsize h, but, in addition (and simultaneously) with stepsizes a i h; i = 1; : : :; r. In this way, at each step, a whole block of approximations to the exact solution at oo-step points is computed. In the n...
متن کاملHigh Order Sonic Boom Modeling by Adaptive Methods
This report presents an accurate approach to simulate the sonic boom of a supersonic aircraft. The near-field flow is modeled by the conservative Euler equations and is solved using a vertex-centered finite volume approach on adapted unstructured tetrahedral meshes. Then, from the CFD solution, the pressure distribution under the aircraft is extracted and used to set up the initial conditions o...
متن کاملAdaptive and high-order methods for valuing American options
We develop space-time adaptive and high-order methods for valuing American options using a partial differential equation (PDE) approach. The linear complementarity problem arising due to the free boundary is handled by a penalty method. Both finite difference and finite element methods are considered for the space discretization of the PDE, while classical finite differences, such as Crank-Nico...
متن کاملHigh-order finite-volume adaptive methods on locally rectangular grids
We are developing a new class of finite-volume methods on locally-refined and mapped grids, which are at least fourth-order accurate in regions where the solution is smooth. This paper discusses the implementation of such methods for time-dependent problems on both Cartesian and mapped grids with adaptive mesh refinement. We show 2D results with the Berger–Colella shock-ramp problem in Cartesia...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 1997
ISSN: 0377-0427
DOI: 10.1016/s0377-0427(97)00030-7